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Theoretical investigation of the temperature
regime and pressure distribution in a gas main
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Abstract—A theoretical expression is obtained for a variable temperature and pressure of a real gas moving
along a gas main in the presence of heat transfer.

THE gas dynamic relations will be derived which take
into account the real properties of a gas moving in a
gas main and heat conduction to the ground. First,
some relations will be written which will be required
to simplify manipulations in the application to gas
mains.

The change of pressure in a pipe-line is given by {1}
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The reduced gas flow rate is [1]
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The energy equation has the form [3]
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where W,, is the supplied heat power, G = p(nD*/H) W
the mass flow rate, D the pipe-line diameter, and w
the gas velocity.

The correcting factor is given by {3]
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The critical velocity of the real gas is [3]
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First of all, it should be noted that equations (1),
{2) and (5) can be simplified because of the negligibly
small quantity within the square brackets multiplied
by the small quantity
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Moreover, the ratio (Z),,r,/(Z,)., in equation (1) can
be taken approximately equal to unity.

As a result, the following expressions can be
obtained for gas mains:

k+1 1
i\

(&)

©

kr"l

p= (z)p,'.r kT

ko1,,\1 Lkr=1
Xm"fﬁ "») Poanm‘h( P E

k Lk~ 1)
xmez,) ™

219



220 E. A, ORUDZHALIYEV
NOMENCLATURE
a speed of sound in real gas [m s~ 1] T temperature {K]
a,  critical velocity of real gas [ms™1] w gas velocity fm s~ 1]
as  speed of sound in ideal gas [m s~ '] y correction factor, a/ay
{(a.)is critical velocity of ideal gas {m s~ ] z coefficient of compressibility.

C,  isobaric heat capacity of real gas

kg 'K Greek symbols
F tube cross-section {m?] ¢ correction factor
G gas flow rate [kg s~ '] Co 8(8edia
L speci 1A~ hoat n-ahn nfidaal oas e A Asmeity (e s — 31
n Fpuiiie n¢al rauo o 1ata: BG3s p/ Wy ULty [RE T i
kr temperature index of real gas adiabatic,

[I—@/TY@ETIép)) ! Subscripts
p pressure [N m™? cr critical
R gas constant [J kg~ ' K] id ideal.
G 1 kp—1 — Lk~ 1) written as
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Equation (3) can be written in differential form as
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Taking into account the Joule-Thomson effect, which
will be denoted by J(°C g m~ "), equation (11) can be
rewritten as

of 7
+ (5;) dp+ 2 C(dT+Jdh) (12)

where dl is the length of the tube element.
Integrating equation (12) yields
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In view of the fact that gas cools down in the course
of its motion in a gas main, equation (13) can be

+f (af)d_u— —C (T, ~T,). (14)

It was suggested in refs. [3, 4] that
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Substituting equation (15) into equation (14) and
writing out the latter in the application to the critical
regime, as well as assuming the finite parameters to
be variable, it is possible to obtain
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where T, is the gas stagnation temperature at the
inlet to a pipe-line, and T, the variable (because of
cooling) gas stagnation temperature.

It is possible to write that

a% = y%kRTls
When M =1

a® = y*kRT.

a=doy Gy = dygr-

Substituting the values of the temperatures ex-
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pressed in terms of the critical velocities into equation
(16) gives
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or, with regard for equations (17) and (18)
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Neglecting, because of the small size, the quantity
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equation (19) can be written in the form
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into equation (20) and taking into account equation
(9) results in
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Here, the quantity (kr— 1)/k; has been given the sub-
script X which indicates that it is a variable quantity
because of gas cooling in the pipe-line and that it
corresponds to the variable stagnation temperature
TOx'

@n

After transformations equation (21) can be pre-

senited in the form
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(where subscript 2 refers to the gas parameters at the
end of the pipe-line element considered), equation
(22) can be rewritten as

BTy~ To,_o(GC —JJ; dl).

The heat conducted from the gas to the ground
along the pipe-line element is determined as

23)
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where K is the coefficient of heat conduction from the
gas to the ground, T, the ground temperature in
Kelvin, and D the pipe-line diameter.

Substituting equation (24) into equation (23) yields

‘DK
-T,, = —B[J;G—CP(T— T,,)+J] dl.

Using the notation

nDK =T 1
GC, LN

it is possible to write

C=

d
BTy—T, = —Hf C(To,—T)dl (25)
o

For the integration of equation (25), the following
numbers are used :

Nu= IED (26)
T

Pr= "GP @7

T
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(28)

(Since the heat flows across thin tubes it is possible to
assume that X = «, i.e. to the heat transfer coefficient
in the expression for the Nusselt number ; subscript T
in the thermal conductivity coefficient A, is used to
distinguish it from the velocity coefficient 4.)

The weight flow rate is

D-
G= plr—4—- w.

(29)
The simultaneous solution of equations (26)—(28) will
give the quantity C in terms of the above numbers
and pipe-line diameter as

4Nu

= DPrRe (30)

Substituting equation (30) into equation (25) gives

‘[ =DK ,
BT,—T,, = —GJ;[EE,:(TOX—T)]dL (31

It is seen from equation (30) that the quantity C

depends on Nu, Re, Pr and D. These numbers vary

little along a constant-diameter pipe-line. This allows

C to be considered as a constant in integration. Also

constant is the quantity & expressed by equation (22).
Now, equation (31) can be presented as

dTOx
T oT —6cdl (32)
Integration gives
In(Toe—T7") = 8Cl+const. 33)

The integration constant is determined taking into
account that

[=0, T, =BT,
Thus
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By virtue of the fact that
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equation (34) can be written as
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Whence there results the expression for the variable
stagnation temperature
J
Too = (BTo~Tg) e+ Tp— ol —e=%. (37)

Equation (36) differs from an analogous expression
obtained in ref. [5], because in the present paper the
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flow of a real gas is considered the non-ideal character
of which is taken into account by the coefficients B
and @ given in terms of the temperature indices of the
real gas adiabatic.

Thus, coefficients B and 8 make it possible to take
account of a set of important factors that characterize
the specific features of a real gas. For an ideal gas
By = 1and 8, = 1. Moreover, equation (36) involves
a varying stagnation temperature T,,, whereas the
expression given in ref. [S] involves a varying ther-
modynamic temperature 7 for a perfect gas flow,

At a certain place in the pipe-line the gas tem-
perature attains the temperature of the ground. This
distance from the pipe-line inlet can be determined by
assuming that T, = T in equation (37) and also that
B =1 at the beginning of the pipe-line. Then, this
distance /. will be determined as

(38)

1 C
[,r =%ln [7(TO-Tgr)+l]

Now. the pressure and velocity distributions in a
pipe-line will be established.

In ref. [2] the solution of gas dynamic problems in
real gas flows in the presence of heat transfer gave the
following important expression :
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In the first approximation, assuming the gas to be
ideal and heat transfer to be absent, the following
relation can be used which is well known in gas
dynamics:

=. (40)

Under the same assumptions, the reduced flow rate
of the ideal gas is given by

G [(k+1\*Y/ 2k 1 7?
qiia = 7 . @b
Fpo \ 2 k+1 R7Ty,

From the prescribed values of G, F, py; and Ty, it is
possible to find g,y and then 4, from the tables of
gas dynamic functions.

Taking the quantity 4,4 in equation (40) to be the
velocity coefficient at an arbitrary section of the pipe,
it is possible to find, in the first approximation, the
distribution of i, along the pipe. Provided the stag-
nation temperature is constant, equation (2) will give
the following well-known expression, in the first
approximation, for the pressure distribution along a
pipe for the ideal gas in the absence of heat transfer
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Knowing in the first approximation the distribution
of 4,4 along a pipe-line, it is possible to determine from
equation (42) the pressure distribution throughout the
pipe-line. Then from these pressures and temperature
variations, determined by equation (37), it is possible
to find the quantities Z, w, n, k1, y, and &, which
depend on pressure and temperature. These quantities
are determined in the following order,

In the literature the compressibility factor Z is usu-
ally determined from the Berthelot state equation.
However, this equation becomes inaccurate for pres-
sures above 50 bar. In this case it is more advisabie
to determine Z from the experimental diagrams of

compressibility.
The expressions for @ and n are given in ref. 6]
0Z
=Z- («—-) (43
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The partial derivatives (§Z/0p)r and (9Z/3T), in these
equations are determined by the method of graphical
differentiation.

The coefficient y was obtained in ref. [1] and has
the form

Z
y = . 43)

Jl(-22)

The coefficient ., is found from equation (4), with
y being determined at critical parameters.

The temperature index of the adiabatic &k, can be
found from the expression [7]

C, kr—1
w——i kT .

(46)

On having determined §,, and ¢, the value of
a,., is determined from the values of T, found from
equation (37), as well as different values of a,, for each
T, along the gas pipe-line.

Finally, to determine the pressure distributionin a
real gas with allowance for heat transfer by formula
(2), it is necessary to know 1. As the values of a
are now available, it is possible to determine 4 from
equation (39) with the aid of a computer.

CALCULATION OF THE TEMPERATURE
REGIME AND COMPARISON OF THE
RESULTS OBTAINED WIiTH
EXPERIMENTAL DATA

In the example given in ref. [7] the pipe-line has a
length of 128 km and a diameter of 760 mm. The
gas flow rate is 0.58 x 10° kg h™! and the initial gas
pressure is 30.6 kg cm~2 The ground temperature is
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t, = 16.7°C. The heat transfer coefficient is taken to
be 244 kealm~2h~' K~

In Table 1 the experimental data of Shorre are
presented as well as the computational results of other
authors. These data are supplemented with results on
gas temperature variations along a gas main obtained
theoretically in the present work,

For the given initial and final pressures use can be
made of the Berthelot state equation in which

9 PLf T
128p. T T?

where p. = 44.9 atm, T, = 190.5 K.

With the partial derivatives (3Z/dp)r and (6Z/0T),
being found from equation (47), equation {4) gives
that # = 1, whereas

@7

27p T?
w—1+3—2;;‘f3~.

(48)
In the data given for the pipe-line: w,=12;
@, = 1.16. With the heat capacity C, = 2.219kJ kg™’
K-, equation (46) gives

kr-—l) (k,-l)
=0.281; = 0.272;
( kT 1 kT 2

kr““i
( P )“ = 0.276.

According to equation (227}, 8 = 1.016. According
to equation (22"), B is a variable quantity, which
changes very little along the pipe-line. The values of
B are presented in Table 1.

The quantity C, which enters into computational
formula (37) and which is defined as C = (nDKX)/
(GC,), depends on the heat conduction coefficient
K. Allowing for the conducting properties of the
surrounding ground, Shukhov and Leibenzon [7]
recommended that for moist sand this coefficient
should be taken equal to K=3 kcal m~? h~' K-
[5]. At the given values for the gas pipe-line, when
K =3, the value of C = 2.33x 10 * m~". The Joule-
Thomson effect constitutes J=62x10"% g m~!,
Ty = 327.4 K. In Shorre’s calculations K = 2.44 kcal
m-2h-'K-'.

Thus, entering all the values into equation (37) the
value of T, along the gas pipe-line can be determined.
The values found are included in Table 1. As is seen
from Table 1, the values of T, agree rather well with
the data measured experimentally by Shorre. The
table contains thermodynamic temperatures T instead
of the stagnation temperatures Ty,. But as the gas
velocities in the pipe-line are small the values of T,
do not virtually differ from those of T.

According to formula (38), /. = 115000 m. At the
values of K and C used by Shorre, [, = 110000 m.
Equation (37) gives for I = oo [5]
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Table 1
£ (°C)
Value of According According
Bin to Shorre’s to data
formula By formula experimental By Shukhov’s obtained
I/L 37D 37 data formula in ref. [6]
0.125 0.996 40.9 40.5 43.6 434
0.175 0.994 36.9 37.8 40.6 40.2
0.312 0.990 28.6 317 335 32.2
0.586 0.981 20.8 21.1 249 214
0.750 0.976 174 16.7 219 18.0
1.000 0.968 15.5 12.8 19.0 15.2
(Todw = Ty — 1 (5) The agreement between the experimental data
Ox/min = fgr o of Shorre and the results obtained in the present work
) . and in ref. [7] is the result of the allowance for the
In the case considered in the present paper nonideality of gas moving in a pipe-line. Therefore,
6.2 the relations obtained can be recommended for prac-
(for)min = 16.7 = 14°C. tical application.

T233

This is found to be close to the experimental data of
Shorre, because Shorre’s experimental values of /,
6.2

= 16.7— — = 14.3°C.

(tOx)min 25

CONCLUSIONS

(1) It is evident from Table 1 that the allowance for
the nonideality of the gas is very important for finding
the temperature distribution along a gas main.

(2) The formula suggested by Shukhov relates to
the ideal gas flow. Therefore, the temperatures by
this formula deviate greatly from those obtained in
Shorre’s experiments.

(3) Since the results are very sensitive to the heat
conduction coefficient, its correct selection with
regard for the ground conditions is very important.

(4) 1t is seen from Table 1 that in both the present
work and ref. [7] the allowance for the gas nonideality
brings about the gas temperature decrease below the
ground temperature. This fact requires further exper-
imental investigations.
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ETUDE THEORIQUE DE LA DISTRIBUTION DE TEMPERATURE ET DE PRESSION
DANS UN GAZODUC

Résumé—On obtient une expression théorique pour la température variable et la pression d'un gaz
s'écoulant dans un gazoduc en présence d'un transfert thermique.

THEORETISCHE UNTERSUCHUNG VON TEMPERATUR- UND DRUCKVERTEILUNG
IN EINER GAS-HAUPTLEITUNG

Zusammenfassung—Eine theoretische Formulierung fiir die variablen Werte von Temperatur und Dru_ck
eines realen Gases, das unter dem EinfluB von Wirmeiibertragung in einer Gas-Hauptleitung strémt, wird
vorgestellt.

TEOPETHUYECKOE UCCJIEAZOBAHHME TEMIEPATYPHOI'O PEXXHMMA, A TAKXKE
PACINPEAENEHUS JABJEHUS B MATHCTPAJIBHOM TA3OMPOBOAE

Amoramus—Ha OCHOBE TEOPETHYECKHX HCCIEAOBAHHI MOMYYEHO AaHATHTHYECKOE BbIpAXKEHUE NICPEMCH-
HOMl TEMHEpaTypsl M JaB/CHHS PeaNbHOro Ta’a, ABHXYIICrOCS BIOML ra3ONPOBONA NpH HANMMUA
Tennoobmena.



