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Abstract-A theoretical expression is obtained for a variable temperature and pressure of a real gas moving 
along a gas main in the presence of heat transfer. 

THE GAS dynamic relations will be derived which take 
into account the real properties of a gas moving in a 
gas main and heat conduction to the ground. First, 
some relations will be written which will be required 
to simplify manipulations in the application to gas 
mains. 

The change of pressure in a pipe-line is given by [I] 

The reduced gas flow rate is [I] 
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The energy equation has the form [3] 

where W, is the supplied heat power, G = p(~D2~4) W 
the mass flow rate, D the pipe-line diameter, and w 
the gas velocity. 

The correcting factor is given by [3] 

The critical velocity of the real gas is [3] 

First of all, it should be noted that equations (1), 
(2) and (5) can be simplified because of the negligibly 
small quantity within the square brackets multiplied 
by the small quantity 

Moreover, the ratio (Z)~~~~/(Z~)~ in equation (1) can 
be taken approximately equal to unity. 

As a result, the following expressions can be 
obtained for gas mains : 

+R&iV2--Td (3) 
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NOMENCLATURE 

speed of sound in real gas [m s- ‘1 
critical velocity of real gas [m s- ‘1 
speed of sound in ideal gas [m s-l] 
critical velocity of ideal gas [m s- ‘1 

isobaric heat capacity of real gas 
[J kg- ’ K- ‘1 
tube cross-section [m’] 
gas flow rate [kg s- ‘1 
specific heat ratio of ideal gas, C,/C, 
temperature index of real gas adiabatic, 

[l -wwT/~PU i 
pressure [N m- ‘1 
gas constant [J kg- ’ K- ‘1 

T temperature fK] 
W gas velocity [m s- ‘1 

Y correction factor, a/aid 
z coefficient of compressibility. 

Greek symbols 

:,, 

correction factor 

%(%,)id 
P density [kg m- ‘1. 

Subscripts 
cr critical 
id ideal. 

(9) 
It was suggested in refs. [3,4] that 

* Jf 
Equation (3) can be written in differential form as i( > I 

G r dp = RTi KG),, -(Z,h,l. (15) 

Substituting equation (15) into equation (14) and 

--a- dp+R&idT. (10) writing out the latter in the application to the critical 
regime, as well as assuming the finite parameters to 
be variable, it is possible to obtain 

Since w = (C,,/R)((kT- 1)/k,) [3] 

li d%,, V - 

~~~-~~~~d~j=~~~T~~~ 

--= 
CZ G 0 

ap dp+;CPdT. (11) 
r 

x W&,, -(Z,,,),~l+~C,(T,-T:). (16) 

Taking into account the Joule-Thomson effect, which 
wiil be denoted by J(“C g m- ‘), equation (11) can be By virtue of equation (4) obtain 

rewritten as 

a:,, = 2e:, 

0 

&RTB (17) 
zdW,x= dw’ 
cii G 

2 + g dp+$C,(dT+Jdl) (12) 

IW 

where dl is the length of the tube element. 
Integrating equation (12) yields where T,, is the gas stagnation temperature at the 

inlet to a pipe-line, and Tax the variable (because of 

ti w, 
cooling) gas stagnation temperature. 

-- 
6G 

It is possible to write that 

a: = y:kRT,, a2 = y2kRT. - I 
+$c,(r,-r,)+;C,J o dl. 03) When&f= 1 

s 

In view of the fact that gas cools down in the course 
a = a,,, 4, = uln. 

of its motion in a gas main, equation (13) can be Substituting the values of the temperatures ex- 
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pressed in terms of the critical velocities into equation 
(16) gives 

2 2 
&cr - 41 

= - + & tar)~,_-(z&,_l 2 

or, with regard for equations (17) and (18) 

-4(&g. (19) 

Neglecting, because of the small size, the quantity 

equation (19) can be written in the form 

Introducing 

C, k,- 1 

w=x kr 

into equation (20) and taking into account equation 
(9) results in 

(21) 

Here, the quantity (kT- 1)/k, has been given the sub- 
script X which indicates that it is a variable quantity 
because of gas cooling in the pipe-line and that it 
corresponds to the variable stagnation temperature 
T 0.X. 

After transformations equation (21) can be pre- 
sented in the form 

T&$I)/(&)x-TOx = [&I]” 

~(&)A-‘(+‘ld+ (22) 

Having introduced the notation 

A= (&I]“(%$!! 

B= ($I)&$ 

= (&),(%Q 

6=$=(&J&), 

(22’) 

(22”) 

(&!” =;[(A),+ (&)J C2T”) 
(where subscript 2 refers to the gas parameters at the 
end of the pipe-line element considered.), equation 
(22) can be rewritten as 

BT,,-T,,, = t’(s-Jldl). (23) 

The heat conducted from the gas to the ground 
along the pipe-line element is determined as 

We, = -nD 
I 

’ K(T- T,) dl 
0 

(24) 

where K is the coefficient of heat conduction from the 
gas to the ground, TV the ground temperature in 
Kelvin, and D the pipe-line diameter. 

Substituting equation (24) into equation (23) yields 

BT,-T,, = -6 
[S 

;g(T- T,,) +J dl. 
P 1 

Usingthe notation 

nDK 
c=cc, 

and T’=T,_I 
C 

it is possible to write 

BT,-T, = -0 
I 

‘C(T,,-T’)dl. (25) 
0 

For the integration of equation (25), the following 
numbers are used : 

Nu=F 
T 

yc,p Pr= ~ 
T 

(26) 

(27) 
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Re = wG, 

(Since the heat flows across thin tubes it is possible to 
assume that K z r, i.e. to the heat transfer coefficient 
in the expression for the Nusselt number; subscript T 
in the thermal conductivity coefficient 1, is used to 
distinguish it from the velocity coefficient A.) 

The weight flow rate is 

The simultaneous solution of equations (26)-(28) will 
give the quantity C in terms of the above numbers 
and pipe-line diameter as 

4Nu 
c=----. 

D Pr Re (30) 

Substituting equation (30) into equation (25) gives 

ST,,-To, = -0 
’ nDK 

S[ 
o ,,(To,-T’) dl. (31) 

P I 

It is seen from equation (30) that the quantity C 
depends on Nu, Re, Pr and D. These numbers vary 
little along a constant-diameter pipe-line. This allows 
C to be considered as a constant in integration. Also 
constant is the quantity Qexpressed by equation (22”‘). 

Now, equation (31) can be presented as 

dTox 
-----= -BCdl. 
T0.r - T 

(32) 

Integration gives 

In (T,,- T’) = BCl+const. (33) 

The integration constant is determined taking into 
account that 

I= 0, To, = ST,,. 

Thus 

To, - T ~ = e-ecI. 
BT,-T 

By virtue of the fact that 

T’ = T,,--J/C 

equation (34) can be written as 

7’0, - T,, + ; 
-8CI 

ST,--T&,+-g 

=e . 

(35) 

(36) 

Whence there results the expression for the variable 
stagnation temperature 

To, = (BT,,-TT,)eAec’+T,- $(1-e-ec’). (37) 

Equation (36) differs from an analogous expression 
obtained in ref. [5], because in the present paper the 

flow of a real gas is considered the non-ideal character 
of which is taken into account by the coefficients B 
and 8 given in terms of the temperature indices of the 
real gas adiabatic. 

Thus, coefficients B and 0 make it possible to take 
account of a set of important factors that characterize 
the specific features of a real gas. For an ideal gas 
Bid = 1 and old = 1. Moreover, equation (36) involves 
a varying stagnation temperature T,,, whereas the 
expression given in ref. [S] involves a varying ther- 
modynamic temperature T for a perfect gas flow. 

At a certain place in the pipe-line the gas tem- 
perature attains the temperature of the ground. This 
distance from the pipe-line inlet can be determined by 
assuming that To, = T,, in equation (37) and also that 
B = I at the beginning of the pipe-line. Then, this 
distance I, will be determined as 

I 
(38) 

Now. the pressure and velocity distributions in a 
pipe-line will be established. 

In ref. [2] the solution of gas dynamic problems in 
real gas flows in the presence of heat transfer gave the 
following important expression : 

, 

= -&. (39) 
LLJ 

In the first approximation, assuming the gas to be 
ideal and heat transfer to be absent, the following 
relation can be used which is well known in gas 
dynamics : 

(40) 

Under the same assumptions, the reduced flow rate 
of the ideal gas is given by 

q,rd = & ($J-“- “(& &J2. (41) 

From the prescribed values of G, F, pot and To, it is 
possible to find q,id and then %,id from the tables of 
gas dynamic functions. 

Taking the quantity lZid in equation (40) to be the 
velocity coefficient at an arbitrary section of the pipe, 
it is possible to find, in the first approximation, the 
distribution of Eid along the pipe. Provided the stag- 
nation temperature is constant, equation (2) will give 
the following well-known expression, in the first 
approximation, for the pressure distribution along a 
pipe for the ideal gas in the absence of heat transfer 
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(42) 

Knowing in the first approximation the distribution 
of &,, along a pipe-line, it is possible to determine from 
equation (42) the pressure distribution throughout the 
pipe-tine. Then from these pressures and temperature 
variations, determined by equation (37), it is possible 
to find the quantities Z, o, q, k, y, and t,. which 
depend on pressure and temperature. These quantities 
are determined in the following order. 

In the literature the compressibility factor 2 is usu- 
ally determined from the Berthelot state equation. 
However, this equation becomes inaccurate for pres- 
sures above 50 bar. In this case it is more advisable 
to determine Z from the experimental diagrams of 
compressibility. 

The expressions for CD and q are given in ref. [6] 

az 
rt”Z_P &, 0 

8Z 

w=Z+T C’ 0 
(43) 

The partial derivatives (aZ/ap), and (aZ/iYQ in these 
equations are determined by the method of graphical 
differentiation. 

The coefficient y was obtained in ref. [l] and has 
the form 

The coefficient & is found from equation (4), with 
y being determined at critical parameters. 

The temperature index of the adiabatic k, can be 
found from the expression [7l 

C,, kr-1 

O=RFk, 
(46) 

On having determined e,, and &,, the value of 
a,_ is determined from the values of r,, found from 
equation (37), as well as different values of a, for each 
Tax along the gas pine-line. 

Finalty, to determine the pressure distribution in a 
real gas with allowance for heat transfer by formuIa 
(2), it is necessary to know 1. As the values of a, 
are now available, it is possible to determine i. from 
equation (39) with the aid of a computer. 

CALCULATION OF THE TEMPERATURE 
REGIME AND COMPARiSON OF THE 

RESULTS OBTAINED WITH 
EXPERtMENTAL DATA 

In the example given in ref. [I the pipe-line has a 
length of 128 km and a diameter of 760 mm. The 
gas Bow rate is 0.58 x IO6 kg h-’ and the initial gas 
pressure is 30.6 kg cm-‘. The ground temperature is 

= 167°C. The heat transfer coefficient is taken to 
2 244 kcal m-‘h-l K-‘. 

In Table 1 the experimental data of Shorre are 
presented as well as the computational results of other 
authors. These data are supplemented with results on 
gas temperature variations along a gas main obtained 
theoretically in the present work. 

For the given initial and final pressures use can be 
made of the Berthelot state equation in which 

z= 1+&&l-6$) (47) 
c 

where pc = 44.9 atm, T, = 190.5 K. 
With the partial derivatives (aZ/ap), and @Z/a7’), 

being found from equation (47), equation (4) gives 
that g = 1, whereas 

27p T,” 
o’l+32--~. 

c 

In the data given for the pipe-line : o1 = 1.2 ; 
wI = 1.16. With the heat capacity C,, = 2.2 19 kJ kg- ’ 
K- ‘, equation (46) gives 

@+), = 0.281 ; @)z = 0.272; 

= 0.276. 

According to equation (22”‘), 6 = 1.016. According 
to equation (22”), B is a variable quantity, which 
changes very little along the pipe-line. The values of 
B are presented in Table 1. 

The quantity C, which enters into computational 
formula (37) and which is defined as C = (zDK)j 
(GC,), depends on the heat conduction coefficient 
K. Allowing for the conducting properties of the 
su~oundi~g ground, Shukhov and Leibenzon [7] 
recommended that for moist sand this coefficient 
should be taken equal to K = 3 kcal m- ’ h- ’ K- ’ 
[5]. At the given values for the gas pipe-line, when 
1y = 3, the value of C =i 2.33 x low5 m-‘. The Joule- 
Thomson e%ct constitutes J = 6.2 x lo-’ g m- ‘, 
To = 327.4 K. In Shorre’s calculations K = 2.44 kcal 
m-2h-’ K-l_ 

Thus, entering all the values into equation (37) the 
value of To* along the gas pipe-line can be determined. 
The values found are included in Table 1. As is seen 
from Table 1, the values of T,,= agree rather well with 
the data measured experimentally by Shorre. The 
table contains thermodynamic temperatures Tinstead 
of the stagnation temperatures TGx. But as the gas 
velocities in the pipe-line are small the values of Tax 
do not virtually differ from those of T. 

According to formuta OS), I, = 115 000 m. At the 
values of K and C used by Shorre, I, = 110000 m. 
Equation (37) gives for I + co [5j 
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Table 1 

/IL 

Value of 
B in 

formula 
(37) 

By formula 
(37) 

According 
to Shorre’s 

experimental 
data 

0.125 0.996 
0.175 0.994 
0.312 0.990 
0.586 0.98 1 
0.750 0.976 
1.000 0.968 

40.9 40.5 43.6 43.4 
36.9 37.8 40.6 40.2 
28.6 31.7 33.5 32.2 
20.8 21.1 24.9 21.4 
17.4 16.7 21.9 18.0 
15.5 12.8 19.0 15.2 

By Shukhov’s 
formuia 

According 
to data 

obtained 
in ref. [6] 

In the case considered in the present paper 

(fOJmin = 16.7- & = 14°C. 

This is found to be close to the experimental data of 
Shorre, because Shorre’s experimental values of I., 

6.2 --_= (fOx)min = 16.7 2.5 14.3”C. 

CONCLUSIONS 

(1) It is evident from Table 1 that the allowance for 
the nonideality of the gas is very important for finding 
the temperature distribution along a gas main. 

(2) The formula suggested by Shukhov relates to 
the ideal gas flow. Therefore, the temperatures by 
this formula deviate greatly from those obtained in 
Shorre’s experiments. 

(3) Since the results are very sensitive to the heat 
conduction coefficient, its correct selection with 
regard for the ground conditions is very important. 

(4) It is seen from Table 1 that in both the present 
work and ref. [7] the allowance for the gas nonideality 
brings about the gas temperature decrease below the 
ground temperature. This fact requires further exper- 
imental investigations. 

(5) The agreement between the experimental data 
of Shorre and the results obtained in the present work 
and in ref. [7] is the result of the allowance for the 
nonideality of gas moving in a pipe-line. Therefore, 
the relations obtained can be recommended for prac- 
tical application. 
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ETUDE THEORIQUE DE LA DISTRIBUTION DE TEMPERATURE ET DE PRESSION 
DANS UN GAZODUC 

R&sum&--On obtient une expression thborique pour la temperature variable et la pression dun gaz 
s’ecoulant dans un gazoduc en presence dun transfert thermique. 

THEORETISCHE UNTERSUCHUNG VON TEMPERATUR- UND DRUCKVERTEILUNG 
IN EINER GAS-HAUPTLEITUNG 

Zusammenfassung-Eine theoretische Formulierung fiir die variablen Werte von Temperatur und Druck 
eines reaien Gases, das unter dem EinfluD von Wiirmeiibertragung in einer Gas-Hauptleitung strtimt, wird 

vorgestellt. 

TEOPETH’IECKOE HCCJIE~OBAHHE TEMI-IEPATYPHOFO PEXMMA, A TAKXE 
PACIIPEF[EJIEHWfi &tBJIEHWl B MAl-MClTAJIbHOM I-A30llPOBOJIE 

Ammmum-Ha OCHOB~ -reopemmecx~x Hcmxenoeamfi nonyvexo atwmtmwcme ebtpafeme nepebfeea- 
HOR TeMneparypbr rr namewin peanbnoro ra3a, nswquerocn utonb ra3onposom apH twwtm 

Tennoo6hIena. 


